
Towards the (bio)-synthesis of carbon nanostructures: understanding the decomposition of CO₂ in a microwave plasma at atmospheric pressure.

<u>A. Cobos-Luque</u>¹, F.J. Morales-Calero¹, A.M. Raya¹, J. Muñoz¹, M.D. Calzada¹, R. Rincón¹ ¹ Laboratorio de Innovación en Plasmas - Universidad de Córdoba, Córdoba, Spain

Biogas is mainly composed of CO_2 and CH_4 and it is produced by the breakdown of organic matter in the absence of oxygen. Biogas can be produced from raw materials, *e.g.* agricultural waste or sewage. Since CO_2 and CH_4 are two of the most important greenhouse gases, biogas emission must be avoided or, at least, converted. In this context, atmospheric pressure plasma technology has shown its potential for the decomposition of both gases [1,2]. However, the use of plasma technology goes beyond the destruction of biogas since it can be tuned to obtain certain nanostructured carbon materials from biogas decomposition [3].

In this work, Ar/CO_2 atmospheric pressure surface wave discharges sustained with a surfatron device at 200 W (2.45 GHz) are researched with the aim of understanding plasma CO₂ decomposition. For that purpose, CO₂ was diluted in different Ar flows in the range 0.5 - 5.0 L/min obtaining CO₂ concentrations up to 1.6%. Mass spectrometry from the exhaust plasma gas (Fig.1.) reveals the formation of O₂ and CO regardless of the experimental conditions. Although,

the m/z signal at 44 a.m.u points out an incomplete CO₂ decomposition, an 85% decomposition rate was achieved for the lower CO₂ flows. Furthermore, the dependency of the decomposition rate on the amount of CO₂ and not on its concentration in the final gas mixture was found. These results are the starting point in the use of CO₂/CH₄ mixtures to obtain carbon nanostructures by this plasma technology.

Acknowledgements: This work was supported by Grant (project ref.) TED2021129261AI00 funded by MCIN/AEI/ 10.13039/501100011033 and by the European Union NextGenerationEU/PRTR and project ref. 1380678-F (FEDER co-funded) by the *Consejería de Economía, Conocimiento, Empresas y Universidad*, Junta de Andalucía (Spain). The predoctoral contract of F.J. Morales-Calero was granted by a MOD-2.2 from Plan Propio de la Universidad de Córdoba (2020).

References:

- [1] Snoeckx, R. et al. Chemical Society Reviews, 46 (2017), 5805-5863.
- [2] Bundaleska, N. et al. Physical Chemistry Chemical Physics, 20 (2018), 13810-13824.
- [3] Hof, F. et al. Carbon (2017), 111, 142-149.