
MHD spectroscopic analysis of the resistive tearing growth rate under the

influence of background flow

J. De Jonghe1 and R. Keppens1

1 Centre for mathematical Plasma Astrophysics, KU Leuven, Belgium

In recent years the resistive tearing instability, first introduced by Furth, Killeen, and Rosen-

bluth in 1963 [1], has garnered renewed interest due to the potentially pivotal role it plays in

magnetic reconnection [2]. Understanding reconnection itself is instrumental in explaining a

variety of eruptive events such as solar flares or the disruption of plasma confinement in toka-

maks [3]. Whilst a finite resistivity and magnetic shear are the necessary requirements for the

tearing instability, the growth rate is also influenced by other physical effects such as the back-

ground flow, viscosity, or the Hall current. All three of the aforementioned contributions are

available in the MHD spectroscopic code Legolas [4, legolas.science] and can be included in

tearing-unstable configurations.

Using Legolas we explore the modification of the tearing growth rate by flow and viscosity

for two plasma slab configurations: one with a rotating field [5] and a Harris sheet [6]. These

magnetic fields are paired with different equilibrium flow profiles, either with or without an

inflexion point. Relevant parameters such as maximal flow speed, density, and plasma-β are

identified and varied. This parametric study presents another step towards a full understanding

of the combined effects of background flow, magnetic shear, and finite resistivity on the linear

MHD spectrum.
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