Experimental campaign of laser plasma interaction on *Shenguang Octopus* laser facility

Zhichao Li^{1*}, Dong Yang¹, Tao Gong¹, Zhanjun Liu², Hongbo Cai², Tao Xu¹, Kaiqiang Pan¹, Xincheng Liu¹, Xiaoshi Peng¹, Yulong Li¹, Xiaohua Jiang¹, Qiang Wang², Wenshuai Zhang², Xin Li², Liang Hao², Qing Wang², Sanwei Li¹, Feng Wang¹, Jiamin Yang¹, Shaoen Jiang¹, Shiyang Zou², Chunyang Zheng², Jian Zheng³, Qihua Zhu¹, Baohan Zhang¹, Shaoping Zhu² and Yongkun Ding²

¹ Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
² Institute of Applied Physics and Computational Mathematics, Beijing, China
³ University of Science and Technology of China, Hefei, China

On MJ-scale laser facility for inertial confinement fusion (ICF) experiments, several beams are bundled together and injected into the target chamber through a common port. This specific configuration could lead to laser plasma interaction (LPI) processes that are quite different from those in experiments on a 10s~100s-kJ-scale facility, as well as to more options for suppressing LPI via combination of different laser smoothing techniques on the beams in a bundle. For studying LPI of a bundle of beams in ignition-scale plasmas, a novel laser facility named Shenguang Octopus has been developed[1]. On this facility, eight laser beams are bundled together, operated at 351nm with a total energy of 30kJ, forming a 0.7-mm diameter focal spot with an overlapped intensity up to 2.5×10^{15} W/cm² at the target chamber centre. Recently, a series of LPI experiments have been performed[1-2] by axially irradiating the laser beams from one side of a gas-filled glass pipe or gold hohlraum target. Laser propagation and backscattering are measured to study the effects of several laser parameters (single beam's Fnumber, multi-color, etc.), in order to answer several challenging problems such as "whether it behaves like one single beam or eight individual beams" or "can it collectively excite LPI that coupled to a common plasma or scattered wave"[3-4]. Several beam smoothing techniques, such as mixed polarizations, smoothing by spectral dispersion, and "multi-color" mode, are demonstrated to be effective in suppressing LPI under current conditions.

^[1] Tao Gong, Zhichao Li, Tao Xu, et al, "First laser plasma interaction experiments on Shenguang Octopus laser facility", *Nucl. Fusion*, submitted (2022).

^[2] Tao Xu, Yulong Li, Xincheng Liu, et al, "Backscatter Diagnostic System Implemented on Cluster Platform of 100 kJ Laser Facility and Experiment", *Acta. Optica. Sinica*, 42, 0514003 (2022).

^[3] ZhanJun Liu, Zhichao Li, Qiang Wang, et al, "Observation of the phase conjugate phenomenon of stimulated Brillouin scattering in bundled-beam laser low-density plasma interaction experiments", *Phys. Rev. Lett*, submitted (2022).

^[4] Qiang Wang, Zhichao Li, ZhanJun Liu, et al, "Wavelength shift induced spacial modulation of collective stimulated Brillouin scattering in plasmas", *Nucl. Fusion*, submitted (2022).