Adiabatic-radiative shock systems in astrophysical jets: from the gamma-ray sky to the laboratory

Anabella Araudo

Abstract

Of all the processes in the Universe, the bipolar ejection of collimated plasma outflows from the inner regions of the accretion disc around a central object are among the most remarkable. Highly supersonic jets form high mass protostars and outflows in classical novae create a double shock structure where they terminate. The coexistence of an adiabatic and a radiative shock is expected in the jet termination region, being this scenario very promising for particle acceleration and high-energy emission [4]. By combining multi-wavelength observational data, numerical simulations, and plasma physics we study diffusive shock acceleration, magnetic field amplification and gamma-ray emission in jets in protostars and supersonic outflows in classical novae. We find that the magnetic field in the jet termination region can be amplified by the non-resonant hybrid (Bell) instability excited by the cosmic-ray streaming [2, 1]. Furthermore, the parameters for scaled laboratory experiments are very much in line with plasma conditions achievable in high-power laser facilities opening the door to new means for studying novae outflows never considered before [3].

References

- Anabella T. Araudo, Marco Padovani, and Alexandre Marcowith. Particle acceleration and magnetic field amplification in massive young stellar object jets., 504(2):2405–2419, June 2021.
- [2] A. R. Bell. Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. , 353(2):550–558, September 2004.
- [3] M. V. del Valle, A. Araudo, and F. Suzuki-Vidal. Adiabatic-radiative shock systems in YSO jets and novae outflows. , 660:A104, April 2022.
- [4] Antoine Gintrand, Quentin Moreno-Gelos, Anabella Araudo, Vladimir Tikhonchuk, and Stefan Weber. Collision between Radiative and Adiabatic Supersonic Flows., 920(2):113, October 2021.